Allocative and implementation efficiency in HIV prevention and treatment for people who inject drugs

Clemens Benedikta,*, Sherrie L. Kellyb, David Wilsona, David P. Wilsonb, on behalf of the Optima Consortium

aWorld Bank, Washington, DC, USA
bBurnet Institute, Melbourne, Australia

ARTICLE INFO

Article history:
Received 19 July 2016
Received in revised form 28 September 2016
Accepted 19 October 2016

Keywords:
HIV
Allocative efficiency
Implementation efficiency
Mathematical modelling
Optimization
Harm reduction

ABSTRACT

Background: Estimated global new HIV infections among people who inject drugs (PWID) remained stable over the 2010–2015 period and the target of a 50% reduction over this period was missed. To achieve the 2020 UNAIDS target of reducing adult HIV infections by 75% compared to 2010, accelerated action in scaling up HIV programs for PWID is required. In a context of diminishing external support to HIV programs in countries where most HIV-affected PWID live, it is essential that available resources are allocated and used as efficiently as possible.

Methods: Allocative and implementation efficiency analysis methods were applied. Optima, a dynamic, population-based HIV model with an integrated program and economic analysis framework was applied in eight countries in Eastern Europe and Central Asia (EECA). Mathematical analyses established optimized allocations of resources. An implementation efficiency analysis focused on examining technical efficiency, unit costs, and heterogeneity of service delivery models and practices.

Results: Findings from the latest reported data revealed that countries allocated between 4% (Bulgaria) and 40% (Georgia) of total HIV resources to programs targeting PWID— with a median of 13% for the eight countries. When distributing the same amount of HIV funding optimally, between 9% and 25% of available HIV resources would be allocated to PWID programs with a median allocation of 16% and, in addition, antiretroviral therapy would be scaled up including for PWID. As a result of optimized allocations, new HIV infections are projected to decline by 3–28% and AIDS-related deaths by 7–53% in the eight countries. Implementation efficiencies identified involve potential reductions in drug procurement costs, service delivery models, and practices and scale of service delivery influencing cost and outcome. A high level of implementation efficiency was associated with high volumes of PWID clients accessing a drug harm reduction facility.

Conclusion: A combination of optimized allocation of resources, improved implementation efficiency and increased investment of non-HIV resources is required to enhance coverage and improve outcomes of programs for PWID. Increasing efficiency of HIV programs for PWID is a key step towards avoiding implicit rationing and ensuring transparent allocation of resources where and how they would have the largest impact on the health of PWID, and thereby ensuring that funding spent on PWID becomes a global best buy in public health.

ã2016 Published by Elsevier B.V.

Introduction

Current HIV programs are faced with the necessity to scale-up prevention while also providing treatment to a larger number of people living with HIV (PLHIV) than ever before. In the 2011 United Nations Political Declaration on HIV and AIDS, countries agreed to reduce sexual and injection-related HIV transmission by 50% by 2015 (UNGASS, 2011). Estimated new HIV infections among PWID remained stable at around 140,000 per year over the 2010–15 period and the 2015 target of a 50% reduction was missed (UNAIDS, 2016). This suggests that there is need for accelerated action if 2020 targets of reducing new HIV infections and deaths by 75% compared to 2010 levels are to be achieved (UNAIDS, 2014a). At the same time, after a decade of rapid growth, international HIV financing stabilized around 2010 (UNAIDS, 2015) and is projected to decline in middle-income countries (Cook, 2015).
Bridge, McLean, Phelan, & Barrett, 2014), in which a large proportion of HIV-affected PWID live. Programs for PWID have been supported by the Global Fund and other international partners and have been particularly dependent on external funding in many countries.

In this environment, there are two main options for how global HIV impact targets can be achieved: (1) increased domestic financing of HIV programs for PWID and (2) greater efficiency in program design and delivery to ensure that programs can do more with what is available. Previous research on cost and impact of HIV programs for PWID has focused on estimating cost-effectiveness of harm reduction (Wilson, Donald, Shattock, Wilson, & Fraser-Hur, 2015) overall or for specific interventions such as opioid substitution therapy (OST) and needle-syringe programs (NSP) (Cipriano et al., 2012; Kim, Pulkki-Brannstrom, & Skordis-Worrall, 2014). Less attention has been paid to the question of how to make HIV programs for PWID more efficient, as concepts of allocative and implementation efficiency have not been widely applied to programs for PWID. Given the large gaps in coverage of HIV prevention and treatment programs for PWID at a time of limited resources, the question of efficiency will become essential not only for impact, but also sustainability of the response.

The concept of allocative efficiency refers to the maximization of health outcomes using the least costly mix of health interventions. HIV allocative efficiency analysis addresses the question “How can HIV funding be optimally allocated to the combination of HIV response interventions that will yield the highest impact?” Technically, allocative efficiency can be accomplished either within a fixed budget envelope to achieve maximal impact with given amount of money or within defined impact targets to achieve a given impact with minimal cost. In both cases, allocative efficiency is achieved by optimizing the mix of interventions to achieve specific impact-level goals. Implementation efficiency can be defined as a set of measures to ensure that programs are delivered in a way that achieves outputs with the lowest input of resources.

Methods

In this paper, we synthesize evidence in relation to HIV prevention and treatment programs for PWID from published and unpublished studies conducted by the Optima Consortium for Decision Science. This consortium of researchers and public health experts collaborate by using data on epidemics and health responses including through mathematical modelling in order to facilitate decision-making in the health sector. The results presented here were generated by applying Optima-HIV, the most widely used model within the Optima suite. Other applications of Optima are currently being used and developed for nutrition, child health, tuberculosis, malaria, hepatitis C, and non-communicable diseases.

Allocative efficiency analysis

In the allocative efficiency analyses presented in this paper, impact goals have been defined as minimizing new HIV infections and AIDS-related deaths. We have conducted allocative efficiency analyses in numerous country contexts in which drug injecting behaviours are common. For reasons of consistency and comparability, we have focused on findings from eight countries in Eastern Europe and Central Asia.

Application of the Optima model

Optima is a dynamic, population-based HIV model with an integrated program and economic analysis framework. In the Optima-HIV epidemic model the total population was partitioned in two ways: by population group and by HIV health state including whether an individual is diagnosed with HIV and by levels of CD4 count. All individuals for a given country were assigned to a population group based on their dominant risk, for example, injecting drug practices or paid sex. New HIV infections occur through interactions among different populations from regular, casual, or commercial sexual partnerships, through sharing of injecting equipment; or through mother-to-child transmission. In the present analysis, male and female PWID were tracked in relation to all three modes of transmission and across the different HIV related health states including five clinical categories (uninfected, undiagnosed, diagnosed, on ART with unsuppressed virus, and on ART with suppressed virus) and six disease states (primary HIV infection, CD4 > 500 cells/mm³, 350 < CD4 < 500, 200 < CD4 < 350, 50 < CD4 < 200, and CD4 < 50). The model uses a linked system of ordinary differential equations to track the movement of PLHIV among HIV health states.

The key assumptions of resource optimization are the relationships among (1) the cost of HIV programs for people who inject drugs and other populations, (2) the resulting coverage levels of populations reached with these HIV programs, and (3) how these coverage levels of HIV programs for priority populations influence behavioural and clinical outcomes. Cost assumptions were based on expenditure data collected by in-country experts in the context of global AIDS progress reporting using the National AIDS Spending Assessment (NASA) definitions of cost categories. Coverage of programs was established using data from national databases and implementation program records. Data from integrated bio-behavioural and other population-based surveys were used to establish behavioural and epidemic trends. As the relationships between cost, coverage, and outcome used to generate future projections and optimizations were based on empirical data, it was implicitly assumed that program quality in translating investment into coverage and outcome was constant over time. To perform optimization analysis, Optima uses an adaptive stochastic descent algorithm to identify the optimal mix of programs within a very large number of possible combinations of programs (Kerr, Smolinski, Dura-Bernal, & Wilson, 2016). The optimization algorithm starts at the current allocation of resources and randomly changes allocations towards a specific HIV intervention. If these changes improve the outcome, the algorithm increases the step size of changes towards that program. This process is repeated until no further improvements are possible and the optimized mix of investments is identified.

The Optima-based studies summarized in this paper were partially conducted using Matlab and partially in a web-based user interface developed in Python. The full Optima model is described in detail in a methods paper with the set of ordinary differential equations used provided in the supplementary material (Kerr et al., 2015). The Optima model has also been compared to other models commonly applied for HIV epidemic and allocative efficiency analysis (Kahn, Bollinger, Stover, & Marseille, 2016; World Bank, 2016).

Allocative analysis efficiency beyond HIV

All HIV interventions have some direct or indirect non-HIV benefits. As these benefits extend into different areas including contraception for condom use and prevention of other infectious diseases for needle and syringe programs, secondary benefits of HIV programs on additional outcomes were not included within the optimization analysis. For opiate substitution therapy, a special approach was applied given the proven benefits on HIV and across different sectors (MacArthur et al., 2012). Such additional benefits were reflected using a cross-sectoral financing model to effectively
distribute the costs in accordance with the benefits. By adapting standard techniques from welfare economics to attribute the benefits of OST programs across the benefiting sectors, it was estimated that average HIV-related benefits represent only approximately 10% of the overall health and social benefits of OST. Therefore, only 10% of OST costs were included in this HIV-specific optimization analysis.

Implementation efficiency analysis methods

Implementation efficiency analysis presented in this study included dimensions of (1) technical efficiency of service delivery, (2) efficiency of management including planning, quality assurance, monitoring, evaluation and information flows (3) efficiency in program financing and financial flows and (4) institutional efficiency and systems integration. A search for “efficiency” in relation to HIV programs for PWID was conducted and only a very limited number of relevant articles could be identified that focused either on cost-effectiveness or very specific aspects of efficiency. We present results from a program efficiency study conducted in three Oblasts (districts) of Ukraine, which applied heterogeneity analysis of service delivery processes, service packages, staffing, and unit costs. In this approach variations in efficiency between different sites and regions is analysed in order to understand factors influencing program performance and how good practice can be replicated in other facilities or regions.

Results

Allocative efficiency of HIV prevention and treatment programs for PWID

HIV allocative efficiency analysis was conducted in eight countries with significant HIV epidemics among PWID in Eastern Europe and Central Asia (Armenia, Belarus, Bulgaria, Georgia, Kazakhstan, Kyrgyzstan, Moldova, Ukraine) using a similar analytical framework.

Fig. 1 summarizes allocations of HIV resources to different programs. The left column for each country represents the total annual HIV spending from the latest year with reported data (either 2013 or 2014 for all countries).

The right column for each country represents optimized allocations for the same amount of funding to minimize cumulative HIV incidence and AIDS-related deaths by 2020 according to the Optima model. Programs for PWID and needle syringe programs represented in the charts include distribution of sterile needles, condoms, HIV testing and counselling, and related outreach in-line with country-specific program packages. Opioid substitution therapy includes medication, counselling, and related services. ART service provision for PWID is included within the optimal ART program.

In the last reported year, countries allocated between 3.9% (Bulgaria) and 40.3% (Georgia) of their total HIV resources to programs targeting PWID — with a median of 13.0% for the eight countries. In comparison, the optimized allocations between 8.6% of the total budget for Moldova and 24.5% for Georgia were allocated to PWID programs, with a median allocation of 16.1% for the eight countries. If HIV resources were allocated optimally according to the Optima model then HIV infections would decline by 3–28% in the eight countries and AIDS-related deaths by 7–53% by 2020. Variation in allocations between countries is lower in optimized allocations than past allocations, but some variation remains due to differences in HIV epidemics, unit costs, and current resource allocation patterns.

Despite the large financial requirements for increasing ART coverage, optimized allocations imply that funding PWID prevention programs should be increased for five countries and decreased for only three countries. Whereas allocations to prevention programs for PWID were reduced in three countries as a percentage of total HIV spending, this is not equivalent to reducing coverage. In Georgia and Ukraine, the two countries in which optimized allocations to PWID prevention programs suggest reductions from 40.3% to 24.5% and 19.0% to 15.0%, respectively, based on discussions with country representatives it was assumed that the unit cost per PWID reached with programs could be reduced compared to baseline. Accordingly, the coverage of programs for PWID based on optimized allocations would remain stable. Investments in programs for PWID remain part of optimized allocations in Bulgaria and Georgia, where HIV epidemics among PWID have stabilized and sexual transmission among men who have sex with men (MSM) has become the single most important mode of HIV transmission according to our model projections. In Georgia, the country with the largest current budget allocation to PWID programs, but lower HIV prevalence among PWID compared to several other countries, optimized allocations suggest realocating funding from PWID programs to ART (including ART for PWID,
Table 1. Cost of NSP/PWID outreach programs and program support costs for countries in EECA (2013).

<table>
<thead>
<tr>
<th>Country</th>
<th>NSP/PWID Program Costs</th>
<th>Program Support Costs</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armenia</td>
<td>$120,000</td>
<td>$30,000</td>
<td>$150,000</td>
</tr>
<tr>
<td>Belarus</td>
<td>$180,000</td>
<td>$45,000</td>
<td>$225,000</td>
</tr>
<tr>
<td>Georgia</td>
<td>$240,000</td>
<td>$60,000</td>
<td>$300,000</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>$300,000</td>
<td>$75,000</td>
<td>$375,000</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>$360,000</td>
<td>$90,000</td>
<td>$450,000</td>
</tr>
<tr>
<td>Moldova</td>
<td>$420,000</td>
<td>$105,000</td>
<td>$525,000</td>
</tr>
<tr>
<td>Moldova</td>
<td>$420,000</td>
<td>$105,000</td>
<td>$525,000</td>
</tr>
</tbody>
</table>

Note: All costs are in 2013 USD.

A. NSP and PWID programs

B. Opioid substitution therapy

Fig. 2. Program cost per person reached for HIV programs for PWID: highest, lowest and interquartile ranges.

Source: Prepared by authors based on completed Optima spreadsheets for 8 countries and Avenir Health (2016).
WHO database has not been updated since 2008. Fig. 4 presents more recent prices for methadone from different sources with annual cost ranging from US$96 with production in Viet Nam (USAID, 2014) to US$692 in the United Kingdom (World Bank, 2014), while an annual methadone supply can be purchased for US $141 globally (UNICEF, 2016).

Five findings on implementation efficiency of NSP

Data from cost-effectiveness and allocative efficiency studies suggest that variation in cost extends beyond drug prices into other areas of program implementation. A study in Ukraine (World Bank, 2014) revealed five areas for enhancing implementation efficiency of NSP programs by comparing performance in specific sites and Oblasts. (1) Variation in service delivery focuses on different components of service packages was high among different sites. The proportion of client visits, during which core NSP services were offered, ranged from 10% to 49%, with a mean of 28%. (2) Linkages, referrals, and integration with other services were not formalized leading to service disruption. (3) The same type of facility is operated with substantially different staff profiles, staff numbers, and opening hours contributing to wide variation in the number of clients who received services per hour from 0.3 of a client to 8.6 clients per hour per site. (4) There was high variation in operation of NSP sites and cost categories, and standardization could lead to 20–41% reductions in unit cost. (5) If the 48–59% of sites not operating at efficiency of scale could make improvements such that they operated at higher efficiency, 21% of costs could be saved overall (World Bank, 2014). Fig. 5 illustrates variation in coverage and output (sterile needle and syringe distribution) between the 51 sites across the three Ukrainian Oblasts, where the study was conducted. Findings suggest that in Dnipropetrovsk high NSP program coverage was achieved, but levels of syringes distributed remained low, while in Kyiv higher levels of per capita distribution of syringes were achieved, despite relatively few program contacts with PWID. The heterogeneity in patterns pointed to a need for different strategies to enhance implementation efficiency in these three Oblasts (World Bank, 2014). While in
Dnipropetrovsk a focus on improving syringe distribution during an already relatively large number of contacts was required, in Kyiv reaching more PWID could further increase the number of syringes distributed.

Four findings on implementation efficiency of OST

Comparative analysis of OST implementation analysis in Ukraine revealed four key areas for efficiency gains (World Bank, 2014). (1) Access to OST was constrained by the legal environment, regulations, and law enforcement practices targeting OST providers and clients. (2) High variation in the level of site utilization was observed and the number of clients seen per hour per clinician varied from 3.7 to 17.5. (3) Staff costs account for the highest proportion of OST service costs and high variation in staffing levels was observed. (4) Costs at integrated OST sites, where other medical services are provided, were lower than stand-alone OST sites. Two sites efficiently provided integrated ART-OST services, while referrals were limited in other sites. The implication of these potential efficiencies is that if sites could achieve unit costs levels from the most cost efficient site, who serve high volumes of clients at low cost, overall these cost-inefficient sites could save approximately 50% of their unit costs for stand-alone OST and 43% of the unit cost when all costs were included.

Discussion

Allocative and implementation efficiency analyses suggest that there are a range of options to enhance the efficiency of HIV prevention and treatment programs for PWID.

According to the studies we conducted in Eastern Europe and Central Asia, a combination of investment to increase coverage of NSP, OST, and ART services are at the core of optimized allocations in HIV epidemics sustained by drug injecting practices. Additional allocative efficiency analyses, which we carried out in other regions, confirms that for countries with high-level HIV epidemics among PWID, investment in these three core programs is effective in reducing HIV transmission.

In Bulgaria and Georgia, the HIV epidemic among PWID has stabilized and the Optima analyses showed continued effects of investment in NSP and OST programs as part of the optimization. The model suggests that defunding PWID programs could lead to higher HIV incidence rates, which even moderate increases in unsterile needle-sharing could cause. In a scenario analysis we conducted in Ukraine, defunding prevention programs for PWID and other key populations after 2018 would lead to 75% more new infections in 2030 even with high overall ART coverage (World Bank, 2015h). Recent increases in HIV transmission among PWID in Greece and Romania have demonstrated that rapid increases in HIV incidence in previously stable HIV epidemics need to be considered as plausible epidemic trajectories if programmatic attention is limited (EMCDDA & ECDC, 2012).

In a number of countries in other regions where PWID account for smaller proportions of the HIV epidemic and HIV prevalence among PWID is lower than among MSM or other key populations, HIV specific allocative efficiency analyses suggest that the limited HIV resources should primarily be invested in ART and prevention programs for other key populations, e.g. female sex workers (FSWs) and MSM. This underlines the point that HIV resources alone will be insufficient to address the full global need to support health and harm reduction programs for PWID. A formal optimization tool for analysing allocative efficiency of different drug control programs does not yet exist. However, the question of what allocations of drug control, demand and harm reduction would maximize health impact warrants further exploration. This is particularly important, because HIV-related allocative efficiency analysis focuses primarily on HIV outcomes and thereby underestimates the wider health and social benefits of PWID programs in

Fig. 5. Implementation efficiency in Ukraine.

Source: Prepared by authors based on World Bank (2014) (data) and UNAIDS (2014b) (target).
relation to responding to other infectious diseases such as Hepatitis infections, other blood-borne diseases, increasing economic productivity, and decreases in rates of crime.

The limited amount of reliable available data suggests that there is also large scope for improving implementation efficiency of HIV programs for PWID. The high variation in prices reported for methadone, buprenorphine and ARVs suggests that substantial efficiency gains can be made in drug procurements. Price comparisons using global ARV drug cost databases exist and are regularly updated, but the tracking mechanism is currently not being updated for methadone and buprenorphine. The price of methadone is listed in the global UNICEF supply catalogue as US $141, which offers a benchmark for the unit cost of an annual supply of methadone, although prices of less than US$100 for the same dose have also been reported (WHO, 2008; USAID, 2014). Practices enhancing implementation efficiency of drug procurements, which have been described elsewhere (Wanning et al., 2009), include intensified price negotiations, pooled bulk procurement, and international procurement. For ARVs, additional options to reduce costs include reduced number of ART regimens through use of fixed-dose combinations and procurement of generic prescription drugs or licensing under Trade-Related Aspects of Intellectual Property Rights (TRIPS) flexibilities.

Implementation efficiencies in service delivery identified in the Ukraine study relate to models, practices, and scale of service delivery influencing cost and outcome. More evidence is required to determine the most effective and efficient implementation strategies for PWID programs in different contexts (World Bank, 2014). Findings suggest that rapid heterogeneity analysis and comparison of site, district, and country performance can provide useful findings and be conducted within reasonable time frames. High performance was associated with high volume of client utilization and highly effective use of staff time per client interaction. Simplified types of service delivery models, standardized operating procedures, and effective staffing operations would help to optimize cost-effectiveness. In Georgia, utilization of OST sites was increased by removing a ceiling on the number of clients that can be registered and served at an OST site at a given time (World Bank, 2015c). Other analyses of cost-efficiency of PWID programs have emphasized the importance of retention, which requires attention to administered drug doses and adherence to screening criteria to avoid instances whereby clients who are not prepared for OST drop out of care and are then reinitiated for shorter periods (Sullivan, 2013). This also highlights the need to provide a core package of HIV services for PWID including NSP, OST, and ART within the wider package of health service delivery, which includes diagnosis of HIV and other infectious diseases, in particular Hepatitis, as well as condom promotion and distribution, HIV counselling, and psycho-social support. Effects of measures to increase implementation efficiency will require additional research and evaluation. Specific implementation efficiency gains are unlikely to affect program quality. For example improved procurement and optimized utilization of site capacity to the level of other sites providing similar service packages. However, additional research is needed on the interaction of quality and efficiency in relation to comprehensiveness versus focus of service packages for PWID, while considering effects of different packages on multiple health and social outcomes. It is likely that improved efficiency in relation to service packages for multiple health outcomes will depend on local costs, delivery modalities, service integration, and epidemiological trends.

Conclusions

Allocative efficiency analysis in countries with HIV epidemics sustained by PWID suggests that increased investment towards NSP, OST, and ART programs would lead to reductions in new HIV infections by 3–28% and deaths by 7–53% compared to business as usual, even without additional resources and with decreases in resources to other HIV programs. In order to end the HIV epidemic among PWID as a public health threat by 2030, high coverage levels of PWID programs will be required; this could also be achieved through additional financing from non-HIV resources. Further analysis and a policy dialogue surrounding allocative efficiency of global spending on drug control are proposed as next steps. With efficient implementation models, the cost of PWID programs could be substantially reduced. Effective procurement, simplified service delivery models, improved utilization of staff, and service delivery facility capacities could contribute to achieving more with whatever resources are available. Increasing efficiency of HIV programs for PWID is not aiming for nor driven by austerity, but a key step to avoiding implicit rationing and transparently allocating resources where and how they will have the largest impact on the health of PWID.

Acknowledgements

The study was funded by the World Bank Group and supported by the Australian National Health and Medical Research Council. The authors also thank the many other people who contributed to the studies which are reported in this paper including partner agencies (particularly UNAIDS, UNDP, Global Fund), country government representatives, as well as the many other contributing stakeholders and consultants. We also thank the UNODC for convening a scientific consultation, during which this work could be discussed with a group of international experts.

Conflict of interest

The authors report no conflicts of interest. The study was funded by the World Bank Group and supported by the Australian National Health and Medical Research Council. David Wilson is employed by the World Bank and Clemens Benedikt works as a consultant for the World Bank. Sherrie Kelly and David P. Wilson are employed by the Burnet Institute. All authors contributed to this paper as part of their employment and declare no specific financial interests in relation to preparation of this paper.

References

USAID (2014). Options for integrating procurement and supply chain systems for ARVs, Methadone and anti-Tuberculosis drugs in Vietnam.

